Рукавный фильтр, описание, устройство, принципы работы, характеристики и применение

Рукавный фильтр, описание, устройство, принципы работы, характеристики и применение

Рукавный (еще его называют «мешочный») пылеуловитель представляет собой промышленный аппарат для очистки воздуха от сухих механических включений.

Компактный ФРИП-фильтр

Компактный ФРИП-фильтр

Конструкционно рукавный фильтр для аспирации представляет собой башню, (обычно, из стали), прямоугольного, квадратного или круглого сечения, в которой располагаются ключевые узлы аппарата – рабочая камера с рукавами, система регенерации (блок продувки или вибровстряхивания), обслуживающие элементы, патрубки ввода и вывода среды; бункер для пыли обычно вынесен за пределы корпуса, но в некоторых случаях может располагаться внутри общей конструкции агрегата.

Помимо прочего, в крупных моделях мешочных пылеуловителей пылесборник может оснащаться системами вибрационного встряхивания и автовыгрузки (как правило, на базе шнековых транспортеров).

Червячный транспортер для выгрузки уловленной пыли

Червячный транспортер для выгрузки уловленной пыли

Рукава и рукавный материал

Основным фильтрующим элементом РФ являются т.н. рукава, которые представляют собой текстильные трубки, натянутые на металлические каркасы прямоугольного, круглого или – реже – овального / эллипсоидного сечения.

«Нижний» конец рукавов закрыт (сплошной), «верхняя» же часть мешка открыта – через нее осуществляется выход очищенного воздуха в т.н. чистую камеру, откуда затем среда выбрасывается из фильтра.

Рукава на каркасах, посредством специальных петель или зажимов, закрепляются в т.н. рукавной плите или раме. Количество рукавов может варьировать от нескольких штук до нескольких сотен штук – в зависимости от производительности аппарата.

Каркасы круглого сечения обычно используются в крупногабаритных фильтрах, а прямоугольные – в менее габаритных (для повышения компактности).

Рукава на каркасах круглого сечения

Рукава на каркасах круглого сечения

На заре мешочных пылеуловителей для фильтр-материала использовалась материя, полученная методом традиционного ткачества, но после изобретения т.н. геотекстилей использовать стали именно их, поскольку поры синтетических текстилей значительно меньше таковых у обычных тканей, что выливается в более высокую эффективность устройств в разрезе дисперсности улавливаемых частиц.

Для производства рукавов часто используется нетканый материал – одинарную нить (т.н. мононить), которая запутывается в хаотичный массив микроскопическими иглами с крючками. Затем этот запутанный массив раскатывается и запрессовывается до приемлемой толщины (и уже напоминает по внешнему виду синтетическую ткань).

Нетканый материал под микроскопом

Нетканый материал под микроскопом

Вы наверняка видели нетканый материал – он часто применяется в качестве несущей подложки для бытовых линолеумов. Валенки – фактически, тоже сделаны из нетканого материала, полученного методом валяния.

Среди других методов создания нетканых полотен – термический, химический и другие подходы (см. SpunJet, SpunLace, AirLay и др).

Принцип работы фильтра рукавного типа

Принцип работы рукавных пылеуловителей основан на задержании механических частиц в микропорах фильтрующего синтетического материала:

1. Запыленный поток подается (нагнетается) в рабочую камеру аппарата (которая – при отсутствии звена грубой, первичной пылеочистки – может быть оснащена отбойной пластиной для отсечения крупных частичек);

2. Воздухопоток попадает в т.н. грязную камеру, где расположен блок рукавов;

3. Пылевые частицы оседают на поверхности текстиля, в то время как воздух, молекулы газов которого ничтожно малы, свободно проходит сквозь микропоры и попадает в чистую камеру, откуда эмитируется во внешний воздушный бассейн (или обратно в производственную атмосферу предприятия);

4. Пыль покрывает внешнюю поверхность мешков все большим слоем, увеличивая сопротивление фильтра и препятствуя прохождению среды сквозь текстиль – включается процесс регенерации, т.е. очищения материала от скопившегося фильтрата;

5. Пыль стряхивается с рукавов в пылесборник, (откуда она выгружается вручную или в автоматическом режиме).

Базовая схема аппарата

Базовая схема аппарата

Очистка рукавных фильтров (регенерация)

Поскольку нарастание пыли на рукавах идет быстро и непрерывно, все фильтры рукавного типа непременно оснащаются системами очистки (т.н. регенерации).

На текущий момент можно выделить 2 основных подхода к организации самоочищения аспирационных мешочных фильтраторов – механическое встряхивание и обратная импульсная продувка.

Названия говорят сами за себя:

  1. Механическое встряхивание предполагает вибрационное воздействие на раму для сбрасывания пылевой шубы с рукавов (может продолжаться от нескольких секунд до нескольких десятков секунд и более);
  2. Обратная импульсная продувка – это периодические, короткие (≈ 0,1-0,2 секунды) и сильные (до 10 бар) аэродинамические удары, направляемые в мешки через блок продувочных сопел.
Блок продувочных сопел (сопла могут продувать как все мешки сразу, так и по группам)

Блок продувочных сопел (сопла могут продувать как все мешки сразу, так и по группам)

Импульсный рукавный фильтр на текущий момент является наиболее рациональным выбором для промышленного пылеулавливания, и вот почему:

  • Импульсная регенерация гарантирует быстрое и эффективное стряхивание осевшей «механики»;
  • Не требуется останов машины для проведения процедуры регенерации – самоочистка идет в процессе работы. (Механическое же встряхивание обычно реализуется в тканевых пылеуловителях, которые либо работают попеременно, либо в случае, если фильтр имеет две или более независимых камеры, работающих попеременно: в одной идет очистка, в другой – регенерация);
  • Импульсная самоочистка не предполагает движущихся частей, которые могли бы повредиться или со временем деформироваться, что, в целом, повышает индекс надежности и долговечности рукавных фильтров с обратной продувкой.

Мы ничего не имеем против систем механической регенерации и знаем, что многие производители рукавных фильтров очень серьезно работают над увеличением ее надежности и эффективности, НО на данный момент, при прочих равных обстоятельствах, обратная продувка пневматическими импульсами, по нашему профессиональному мнению, кажется более рациональной – как с точки зрения эффективности, так и с точки зрения экономии и потенциальной ремонтопригодности.