В промышленности главным образом используется три разновидности электродвигателей:
- асинхронные,
- коллекторные;
- синхронные.
Любой из перечисленных движков является частью электропривода, который предназначен для его связи с полезной нагрузкой. В зависимости от того, какая это нагрузка, плавный пуск синхронного электродвигателя отключается и затем снова запускается. Далее более подробно расскажем о том, что происходит при пуске электродвигателя и как оптимизировать этот процесс.
Что происходит при пуске асинхронного двигателя
Для понимания того, какое устройство применить для плавного пуска электродвигателя, надо знать принцип его работы. Самые распространенные двигатели – асинхронные с короткозамкнутым ротором. Их простая конструкция и соответствующая надежность и обусловили популярность этих электрических машин. Хотя ротор вращается, и его форма оптимизирована под этот процесс, он – не что иное, как вторичная обмотка трансформатора.
А, как известно, если в первичной обмотке течет ток, то в ее сердечнике появляется электромагнитное поле. Перечисленные функции в асинхронном движке выполняет статор. Его магнитное поле, которое, в отличие от трансформатора, вращается вокруг ротора, индуцирует в нем токи, связанные с этим вращением. И чем больше разница скоростей поля и ротора, тем больше ток в последнем. Ведь ротор – это обмотка, замкнутая накоротко. А раз существует трансформаторная связь, значит, токи в обмотках зависимы прямо пропорционально.
Теперь перечислим условия, которые существуют при пуске асинхронного двигателя, питающегося от промышленной сети. Сначала рассмотрим трехфазный вариант:
- неизменное напряжение;
- неизменная частота;
- ротор в состоянии покоя.
Присоединение асинхронного движка к электросети и устройства плавного пуска мгновенно создает вращающееся магнитное поле. При этом разница скоростей его и ротора (так называемое скольжение, выражаемое в процентах от скорости вращения электромагнитного поля статора) получается максимальной. И, как следствие этого, – как бы режим короткого замыкания трансформатора. Если мощность движка велика, пусковые токи получаются на уровне тех, что для трансформаторов аналогичной электрической мощности считаются аварийными.

Какое устройство применить для их ограничения, вполне понятно. Оно должно:
- либо уменьшить величину напряжения на обмотках статора на время разгона ротора;
- либо раскрутить ротор до присоединения статора к электросети.
- Также можно внести конструктивные изменения в асинхронный двигатель.
Переключение схемы обмоток
Привести в движение ротор можно лишь в определенных электроприводах. По этой причине такой способ не является типичным. Остаются два, первый из которых наиболее широко используется. Но получить падение напряжения без потерь не так просто. В трехфазной цепи это можно сделать переключением с треугольника на звезду и обратно. Линейное напряжение, приложенное к обмоткам статора движка, обеспечивает в рабочем режиме его более высокую эффективность. Но и пусковой ток в схеме треугольника получается больше.
Поэтому переключение на схему звезда позволяет заметно снизить пусковой ток асинхронного двигателя. Это самый простой способ относительно плавного пуска. В нем применено минимальное число дополнительных элементов, поскольку падение напряжения создается возможностями самой трехфазной электросети. Этими элементами являются коммутаторы, а сама схема показана далее. Но такая простая схема применима лишь в трехфазной сети. В однофазном варианте нет действующего напряжения более низкого, чем фазное.

Использование резисторов
Чтобы получить максимально плавный разгон движка, необходимо использовать элементы, которые обеспечивают соответствующее падение напряжения. С этой целью применяются:
- резисторы;
- дроссели (реакторы);
- автотрансформаторы;
- магнитные усилители.
Эти способы годятся как для трехфазной, так и для однофазной сети. В любом случае придется задействовать коммутаторы, поскольку в определенный момент потребуется присоединить движок к сети напрямую. Схема с резисторами получается наиболее компактной. Однако по мере увеличения мощности движка соответственно увеличивается и мощность пусковых резисторов. Учитывая обстоятельство их нагревания, время пуска должно быть в пределах их допустимого температурного диапазона https://motortronics-russia.com. Иначе от перегрева резисторы придут в негодность.